Back

Handheld Device Schematic


Drawings

Brief Description:

Figure 1 is a schematic front view of a handheld device 100 representing one embodiment

Detailed Description:

The handheld device 100 of Figure 1 and figure 3 may represent, for example, a cellular phone, a portable phone, a media player, a personal data organizer, a handheld game platform, a tablet computer, a notebook computer, or any combination of such devices. By way of example, the handheld device 100 may be a model of an iPad®, iPod®, iPhone®, or macbook® available from Apple Inc. of cupertino, califFigure 1 depicts the front of handheld device 100, while Figure 2 depicts the back of handheld device 100.

The handheld device 100 may include an enclosure 116 to protect interior components from physical damage and to shield them from electromagnetic interference. The enclosure 116 may include window a 108 and window b 112 configured to conceal components such as an image capture device 110 and biometric sensor 114, respectively. By concealing the image capture device 110 and the biometric sensor 114 behind the enclosure 116, these components may remain unseen when not in use. For example, when the image capture device 110 and the biometric sensor 114 are not in use, they may be concealed by selectively causing the window a 108 and window b 112 to be opaque, or “closed.” Since the window a 108 and window b 112 may be color-matched so as to be indistinguishable from the enclosure 116, the enclosure 116 may appear seamless when the window a 108 and window b 112 are closed. When a concealed component is to be in use, such as image capture device 110 and/or biometric sensor 114, they may be exposed from beneath the enclosure 116 by selectively causing the window a 108 and/or window b 112 to become transparent, or “open.” components such as the image capture device 110 and the biometric sensor 114 may be exposed for as long as desired.

In some embodiments, components of the handheld device 100, such as the image capture device 110 and the biometric sensor 114, may be selectively exposed when certain component-using features of the handheld device 100 are activated. By way of example, an image capture feature of the handheld device 100, which may employ the image capture device 110, may become activated when a user elects to run a camera application selectable via a graphical user interface (GUI 106). In general, the GUI 106 may include one or more icon(s) 120 for providing access to features of the handheld device 100 (e.g., applications, features of an operating system of the handheld device 100, features of firmware of the handheld device 100, and so forth). At times during the use of such features, the features may utilize components of the handheld device 100that may be hidden behind a window a 108, window b 112, window c 202, or window c 204 (e.g., the image capture device 110hidden behind the window a 108 or the biometric sensor 114 hidden behind the window a 108 or window b 112B). Thus, in some embodiments, when the handheld device 100 detects that a feature (e.g., a camera application) that is expected to use a hidden component (e.g., the image capture device 110) has been selected via the GUI 106, the window controller 22 of Figure 1 may open the associated window a 108, window b 112, window c 202, or window c 204 (e.g., the window a 108). When the handheld device 100 detects that the utilization of the component (e.g., the image capture device 110) is no longer desired by the feature of the handheld device 100(e.g., the camera application is closed), the window controller 22 may close the window a 108, window b 112, window c 202, or window c 204, hiding the component.


Brief Description:

Figure 2 is a schematic backview of the handheld device 100 illustrated in Figure 1

Detailed Description:

The technique of exposing concealed components is not limited to dynamically changing window a 108, window b 112, window c 202, or window d 204 opacity upon the launch of applications within the electronic device 10. For example, as illustrated in Figure 1, the back of the handheld device 100 may have two windows window c 202 and window d 204 disposed above an image capture device 110 and a strobe 206, respectively. Other embodiments may include more or fewer windows and corresponding concealed components. Initially, the windows window c 202 and window d 204 may conceal the image capture device 110 and the strobe 206. In one embodiment, the window c 202 disposed above the image capture device 110 may be opened by the window controller 22 upon selection of the icon(s) 120 of Figure 1 linking to the camera application. The window d 204 disposed above the LED strobe 206 may remain closed until the camera application determines that increased illumination is desired. Upon such a determination, the camera application may provide some indication to the window controller 22 that the window d 204 disposed above the LED strobe 206 should be opened. The window controller 22 may “open” the window d 204 disposed above the LED strobe 206 by making the window d 204 transparent, exposing the LED strobe 206 for use. Upon determining that the strobe 206 is no longer desired for use, the camera application may provide some indication to the window controller 22 that the window d 204 should be closed. The window controller 22 then may cause the window d 204 disposed above the LED strobe 206 to “close,” becoming opaque and hiding the LED strobe 206. Upon completion of the use of the image capture device 110, the window controller 22 may also close the window c 202 disposed above the image capture device 110, causing the image capture device 110 to disappear into the enclosure 116.

In some embodiments, even the display 118 of an electronic device 10 may be concealed. For example, FIGS. 16A and B illustrate a handheld device 100 having a window a 108, window b 112, window c 202, or window d 204 disposed above a display 118. As shown in figure 16A, when the display 118 is not in use, the window a 108, window b 112, window c 202, or window d 204 may remain closed, hiding the display 118 and giving the appearance of a single seamless enclosure without a display 118. When the display 118 is activated, the window a 108, window b 112, window c 202, or window d 204 may be opened, exposing the display 118, as shown in figure 16B. By way of example, the display 118 may be activated when a user selects certain of the input structures 104 of the handheld device 100.

Window a 108, window b 112, window c 202, or window d 204 may conceal components in the enclosure 116 and/or, when the display 118 is transparent (e.g., a transparent OLED display), under the display 118 of the electronic device 10. 


Parts List

100

handheld device

102

opening loop block

104

input structures

106

GUI

108

window a

110

image capture device

112

window b

114

biometric sensor

116

enclosure

118

display

120

icon(s)

202

window c

204

window d

206

strobe


Terms/Definitions

concealed component

window d

biometric sensor

suitable component

personal data organizer

touch layer

example

window(s)

window controller

cupertino

touch inputs

electronic display system

transparent material

printing layers

electromagnetic interference

enclosure

selection

indication

several printing layers

ambient light layer

infrared layer

icon(s)

transparent OLED display

underlying layers

protection

image capture device

camera application

electronic device

opaque

features

calif

schematic front view

other embodiments

handheld device

glass or plastic

Apple Inc

opacity

image capture feature

technique

input structures

black enclosure system

embodiments

handheld game platform

strobe

window c

more or fewer windows

figure

interior components

current level

increased illumination

window b

protective cover layer

even the display

such devices

GUI

view

color

launch

display cutouts

immediate environment

macbook®

operating system

media player

hidden component

exposure

black color layer

access

front

user elects

tablet computer

layer

completion

single seamless enclosure

suitable embodiment

window cutouts

utilization

display

lower layers

capacitive touch layer

device

notebook computer

portable phone

component

cellular phone

infrared radiation

physical damage

enclosure system

concealed components

other layers

window a

applications

appearance

color layer

components

associated window

visible light

combination

two windows

user

certain component-using features

back

feature

wear

certain components

layers

times

model

firmware

such a determination

windows

such features